Fourier-transform infra-red and birefringence studies of orientation in uniaxially stretched poly(methyl methacrylate)-poly(trifluoroethylene) blends

Y. Zhao, B. Jasse* and L. Monnerie

Laboratoire de Physicochimie Structurale et Macromoléculaire, Ecole Supérieure de Physique et de Chimie, 10 rue Vauquelin, 75231 Paris Cedex 05, France (Received 16 October 1989; revised 20 February 1990; accepted 22 February 1990)

Orientation of both polymer chains in compatible blends of poly(methyl methacrylate)-poly(trifluoroethylene) (PMMA-PF₃E) has been studied using Fourier-transform infra-red and birefringence measurements. Two different behaviours are observed depending whether or not PF₃E crystallizes. In the concentration range where the material remains homogeneous, i.e. up to 10% of PF₃E, one observes an increase of PMMA orientation with respect to the pure polymer, at the same drawing temperature $T - T_g$. In this domain, PF₃E orientation is insensitive to the concentration of this polymer in the blend. When PF₃E crystallizes, a small amount of PF₃E (~3%) remains in the PMMA amorphous phase. Thus, the orientation of PMMA is insensitive to the original PF₃E concentration and remains higher than the orientation of the semicrystalline PF₃E phase increases with crystallinity but remains insensitive to the stretching temperature. The orientation behaviour is well explained by a change of the friction coefficient and by the existence of a physical network originating from the presence of crystallites in crystallized blends.

(Keywords: poly(methyl methacrylate); poly(trifluoroethylene); polymer blends; orientation; Fourier-transform infra-red; birefringence)

INTRODUCTION

In a previous paper¹ we described the orientation behaviour of poly(methyl methacrylate) (PMMA)-poly-(ethylene oxide) (PEO) blends subjected to uniaxial strain above the glass transition temperature. PMMA orientation is greater in the blends than in the pure polymer under the same experimental conditions of stretching (same $T - T_g$ and strain rate $\dot{\epsilon}$), while PEO chains remained unoriented whatever the PEO molecular weight. The results were interpreted in terms of a hindrance to relaxation of PMMA chains induced by a modification of the friction coefficient that arose due to the molecular interactions caused by compatibility.

PMMA is also compatible with fluorinated polymers such as poly(vinylidene fluoride) (PVF₂) and poly(trifluoroethylene) (PF₃E) and it was interesting to extend the previous study to such blends. Unfortunately, PVF₂ is insoluble in many common solvents and we did not succeed in preparing films from dimethylacetamide or dimethylformamide solutions that were thin enough for infra-red examination and had sufficiently good mechanical properties for stretching. On the other hand, PF₃E is soluble in methyl acetate and the preparation of thin films of PMMA-PF₃E blends is easily feasible.

Compatibility of PMMA-fluorinated polymer blends

Compatibility of $PMMA-PVF_2$ blends has been ascertained in the literature by various methods for probing the structure of the blends over characteristic

dimensions ranging from micrometres to ångströms²⁻⁹. Only one glass transition temperature is observed in these blends. PVF_2 is able to crystallize when the weight fraction of the polymer is more than $0.5^{2.10}$. The Flory-Huggins parameter in the blends was measured by the melting-point depression method and found to be $\chi_{12} = -0.295$ at $160^{\circ}C^{3}$.

As compared to PVF_2 , the compatibility of $PMMA-PF_3E$ blends has been the subject of few studies. PF_3E presents a great number of structural defects due to head-to-head and tail-to-tail addition of monomer units during free-radical polymerization^{11,12}. Furthermore, this polymer is essentially atactic¹³. Nevertheless, PF_3E chains are able to crystallize and the structure and morphology of different samples were studied by Lovinger and Cais¹⁴. In an infra-red spectroscopic study of model molecules of PMMA blended with PF_3E , Léonard *et al.*¹⁵ have shown that intermolecular interactions in such blends appear to be stronger than in PMMA-PVF₂ blends.

The present work deals with the study of orientation of $PMMA-PF_3E$ blends using infra-red dichroism and birefringence measurements.

EXPERIMENTAL

The PMMA used was a pure polymer obtained by radical chain polymerization ($M_n = 63\,200$; $M_w = 108\,000$; $T_g = 122^{\circ}$ C; tacticity, triads (%), rr = 55, rm = 39, mm = 6). The two PF₃E samples were industrial products from Atochem. Viscosity measurements performed in methyl

POLYMER, 1991, Volume 32, Number 2 209

^{*} To whom correspondence should be addressed

acetate at 30°C gave $[\eta] = 1.0$ dl g⁻¹ for sample PF₃E/1 and $[\eta] = 1.1$ dl g⁻¹ for sample PF₃E/2.

Sample preparation

Thin films suitable for infra-red spectroscopy were obtained by casting a 6% methyl acetate solution on a glass plate. Subsequent annealing was done under vacuum for 30 h at 120°C in order to remove any trace of solvent and internal stress. The glass transition temperatures of the samples were obtained using a Du Pont 1090 differential scanning calorimeter at a heating rate of 20° C min⁻¹; sample weight was ~ 7 mg. As previously observed by Wang and Porter in oriented polystyrene¹⁶, the glass transition temperature of PMMA and compatible blends is uninfluenced by drawing in the limit of experimental accuracy.

Oriented samples from thin films were obtained on an apparatus developed in our laboratory, i.e. a stretching machine operating at constant strain rate and a special oven to obtain a very good temperature stability over the whole sample (homogeneity is $\sim 0.05^{\circ}$ C). Draw ratios were measured using ink marks on the sample. All the measurements were normalized to T_{g} . As a matter of fact, in amorphous polymers or compatible blends, T_{a} is a characteristic temperature above which motions of chain segments occur and it seems reasonable to choose T_{a} as a reference temperature for chain mobility. This choice is supported experimentally by the results obtained in polystyrene ($T_g = 107^{\circ}$ C), poly(o-chlorostyrene) ($T_g =$ 134°C) and their compatible blends, where similar levels of orientation are obtained in samples stretched at $T = T_{g} + 11.5^{\circ} C^{17}$. Other experimental details on infrared dichroism and birefringence measurements may be found in ref. 1.

Crystallization of PF_3E in the blends

Similarly to PVF_2 , PF_3E is able to crystallize in the blends containing more than 10% of the polymer. As shown in Table 1 and Figure 1, only one glass transition is observed in the as-cast blends up to a concentration of 20% of PF₃E/1 and 10% of PF₃E/2. Such samples are transparent while above these concentrations a whitening is observed, indicating that PF₃E crystallization occurs. However, about 10% of PF₃E in PMMA- $PF_3E/1$, T_g values do not fit a regular curve and scattered values are observed, similar to the behaviour noted in PMMA-PVF₂ blends above a concentration of 25% of PVF_2 in $PMMA^3$, and assigned to crystallization of PVF_2 . After annealing the previous samples for 20 min at 220°C, PF₃E crystallizes, as can be seen on the thermograms given in Figure 1. On the other hand, a thermal treatment at 140°C, which corresponds to the highest temperature used to stretch the samples, does not induce crystallization up to an amount of 10% of PF_3E . Thus, homogeneous blends can be studied in this concentration range. Stretching an as-cast sample con-

 Table 1
 Glass transition temperatures (°C) for each blend

Blend	PF ₃ E (%)			
	5	10	15	20
PMMA-PF ₃ E/1 PMMA-PF ₃ E/2	111 113	101 103	109	101

Figure 1 D.s.c. curves of PMMA-PF₃E blends. As-cast samples: (1) 5% PF₃E; (2) 10% PF₃E; (3) 15% PF₃E; (4) 20% PF₃E. Annealed samples (20 min; 220°C): (5) 5% PF₃E; (6) 10% PF₃E; (7) 20% PF₃E

Figure 2 D.s.c. curve of a sample containing 20% PF₃E stretched at 124°C, $\dot{\epsilon} = 0.026 \text{ s}^{-1}$ at a draw ratio $\lambda = 3$

taining 20% of PF₃E/1 at 124°C and a strain rate $\dot{\varepsilon} = 0.026 \text{ s}^{-1}$ induces crystallization under stress of this polymer as shown by the thermogram given in *Figure 2*.

RESULTS

Orientation measurements

For any absorption band, the dichroic ratio $R = A^{\parallel}/A^{\perp}$ (A^{\parallel} and A^{\perp} being the measured absorbance for electric vector parallel and perpendicular, respectively, to the stretching direction) is related to the second-order moment of the orientation function according to the relation:

$$\langle P_2(\cos\theta) \rangle = \frac{1}{2} (3\langle \cos^2\theta \rangle - 1) = \frac{R-1}{R+2} \frac{R_0+2}{R_0-1}$$
 (1)

with $R_0 = 2 \cot^2 \alpha$, where α is the angle between the dipole moment vector of the considered vibration and the chain axis and θ is the angle between the local chain axis, defined as the axis joining two adjacent CH₂ groups in the main chain, and the draw direction¹⁸.

Although infra-red spectroscopy is an attractive

Figure 3 Infra-red spectra of PMMA (-----) and PF₃E (----)

method of deducing the chain orientation of the different polymers in a blend, overlapping absorption bands may restrict the possibility of analysis. As shown in *Figure 3*, PMMA orientation can be measured using the 749 cm⁻¹ absorption band, which is assigned to a skeletal vibrational motion affected by the CH₂ rocking vibration¹⁹. The α angle of the dipole moment vector of this vibration was measured at 17° (ref. 20). PF₃E orientation may be estimated using the 540 cm⁻¹ absorption band, which can be tentatively assigned to a CF₂ group vibration according to the vibrational analysis of PVF₂²¹.

Birefringence Δ in an oriented compatible blend is related to individual orientation functions²² by the relation:

$$\Delta = f_1 \Delta_1^0 \langle P_2(\cos\theta) \rangle_1 + f_2 \Delta_2^0 \langle P_2(\cos\theta) \rangle_2 \qquad (2)$$

where f_i , Δ_i^0 and $\langle P_2(\cos \theta) \rangle_i$ are the volume fraction, intrinsic birefringence and orientation function of component *i*, respectively.

We shall consider successively orientation in homogeneous blends (up to an amount of 10% of PF_3E) and in blends where PF_3E has crystallized.

Orientation in homogeneous PMMA-PF₃E blends

PMMA orientation. All the samples were stretched at constant strain rate above the glass transition temperature. First consider the results obtained at a stretching temperature $T = T_g + 23^{\circ}$ C and a strain rate $\dot{\varepsilon} = 0.026 \text{ s}^{-1}$ for different PMMA-PF₃E/1 blends. Figure 4 illustrates the change of the $\langle P_2(\cos \theta) \rangle$ orientation function relative to PMMA as a function of draw ratio and PF₃E/1 percentage. Similarly Figure 5 shows the change of PMMA orientation function as a function of draw ratio and PF₃E/2 percentage in blends stretched at a temperature $T = T_g + 17^{\circ}$ C and $\dot{\varepsilon} = 0.026 \text{ s}^{-1}$. In both cases, introduction of PF₃E in PMMA induces a progressive increase of the orientation of PMMA chains.

 PF_3E orientation. As far as PF_3E orientation is concerned, the absorption band at 540 cm⁻¹ is not strong enough in the blends containing 5% of this polymer to allow measurements. The angle α of this vibration is unknown, so orientation of $PF_3E/1$ in the 10% blend stretched at $T = T_g + 23^{\circ}$ C and $\dot{\varepsilon} = 0.026 \text{ s}^{-1}$ was characterized using the quantity $(R-1)/(R+2)_{540}$, which is proportional to $\langle P_2(\cos\theta) \rangle_{PF_3E}$. The results are given in *Figure 6*. A rectilinear relation holds between $(R-1)/(R+2)_{540}$ and draw ratio.

Figure 4 Orientation function of PMMA in PMMA-PF₃E/1 blends as a function of draw ratio. Temperature of stretching $T = T_g + 23^{\circ}$ C. Strain rate $\dot{\varepsilon} = 0.026 \text{ s}^{-1}$. Symbols: (\blacktriangle) pure PMMA; (\Box) blend 5% PF₃E; (\blacksquare) blend 10% PF₃E

Figure 5 Orientation function of PMMA in PMMA-PF₃E/2 blends as a function of draw ratio. Temperature of stretching $T = T_g + 17^{\circ}$ C. Strain rate $\dot{\epsilon} = 0.026 \text{ s}^{-1}$. Symbols: (\blacktriangle) pure PMMA; (\Box) blend 5% PF₃E; (\blacksquare) blend 10% PF₃E

Figure 6 $(R-1)/(R+2)_{540}$ versus draw ratio λ for PMMA-PF₃E/1 blend containing 10% of PF₃E. Temperature of stretching $T = T_g + 23^{\circ}$ C. Strain rate $\dot{\varepsilon} = 0.026 \text{ s}^{-1}$

Another way to estimate PF_3E orientation is to use birefringence measurements. Although intrinsic birefringence of PF_3E is unknown, intrinsic birefringence of PMMA has been measured ($\Delta_{PMMA}^0 = -50.7 \times 10^{-4}$) (ref. 20) and one can characterize PF_3E orientation by the function:

$$\langle P_2(\cos\theta) \rangle_{\text{PF}_{3E}}^* = \Delta_{\text{PF}_{3E}}^0 \langle P_2(\cos\theta) \rangle_{\text{PF}_{3E}}$$
$$= [\Delta - f_{\text{PMMA}} \Delta_{\text{PMMA}}^0 \langle P_2(\cos\theta) \rangle_{\text{PMMA}}] / (1 - f_{\text{PMMA}})$$
(3)

the latter equation making use of equation (2).

Figure 7 illustrates the birefringence data obtained for different homogeneous blends stretched at $T = T_g + 23^{\circ}$ C and $\dot{\varepsilon} = 0.026 \text{ s}^{-1}$. In the blends the negative birefringence of PMMA is balanced by the positive value of PF₃E birefringence. A positive birefringence results in the blend containing 10% of PF₃E/1 with a maximum value around a draw ratio between 2.5 and 3. A similar maximum value of birefringence has been previously observed in PMMA-PVF₂ blends containing 20% of PVF₂ at a draw ratio $\lambda = 2^{23}$.

These results show that, similarly to polystyrene– poly(2,6-dimethyl-1,4-phenylene oxide)²⁴ and PMMA– PVF_2^{23} blends, it is possible to have oriented materials from PMMA–PF₃E blends that have good mechanical properties but no birefringence.

Figure 8 shows the change of $\langle P_2(\cos \theta) \rangle_{\text{FF}_{3E}}^*$ as a function of draw ratio for blends containing 5% and 10% of PF₃E/1. No significant difference is observable between the two blends. As expected, a decrease of the stretching temperature in the 5% blend results in an increase of the $\langle P_2(\cos \theta) \rangle_{\text{FF}_{3E}}^*$ function.

Orientation in crystallized PMMA-PF₃E blends

Besides the study of homogeneous blends, it was of interest to examine the behaviour of blends in which PF₃E has crystallized. Experiments were performed on samples containing 20% and 30% of PF₃E/2 annealed for 48 h at 160°C. As shown in *Figure 9*, thermograms of films exhibit a glass transition at 118–119°C, close to the PMMA T_g value (122°C), and a melting peak around

Figure 7 Birefringence Δ versus draw ratio λ for PMMA-PF₃E/1 homogeneous blends. Lines 1 and 2 are relative to the calculated birefringence of PMMA from infra-red data in the 5% and 10% blends, respectively. Symbols: (\blacksquare) pure PMMA; (\odot) blend 5% PF₃E; (\blacktriangle) blend 10% PF₃E

Figure 8 Orientation function $\langle P_2(\cos \theta) \rangle^*$ of PF₃E versus draw ratio λ for PMMA-PF₃E/1 homogeneous blends. Strain rate $\dot{\varepsilon} = 0.026 \text{ s}^{-1}$. Temperature of stretching $T = T_g + 23^{\circ}\text{C}$: (\blacksquare) blend 5% PF₃E; (\bigcirc) blend 10% PF₃E. Temperature of stretching $T = T_g + 17^{\circ}\text{C}$; (\blacksquare) blend 10% PF₃E

Figure 9 D.s.c. curves of crystallized $PMMA-PF_3E/2$ blends annealed 48 h at 160°C: (1) blend 20% PF_3E ; (2) blend 30% PF_3E

Figure 10 Orientation function of PMMA in crystallized PMMA– PF₃E/2 blends as a function of draw ratio. Strain rate $\dot{\varepsilon} = 0.026 \text{ s}^{-1}$. Temperature of stretching $T = T_g + 12.5^{\circ}\text{C}$: (1) pure PMMA; (2) blends 20% ($\textcircled{\bullet}$) and 30% ($\textcircled{\bullet}$) PF₃E. Temperature of stretching $T = T_g + 20.5^{\circ}\text{C}$: (3) pure PMMA; (4) blend 20% PF₃E

Table 2 Values of $(R-1)/(R+2)_{540}$ in oriented crystallized PMMA–PF₃E/2 blends at a draw ratio $\lambda = 4$ and a strain rate $\dot{\varepsilon} = 0.026 \text{ s}^{-1}$

	20	20	30
Stretching temperature (°C) $(R-1)/(R+2)_{540}$	131.5 0.60	139.5 0.58	131.5 0.68

198°C $(T_m(PF_3E) \sim 200^{\circ}C)$. The two blends were stretched at $T = T_g + 12.5^{\circ}C$ and a strain rate $\dot{\varepsilon} =$ 0.026 s⁻¹. As shown in Figure 10, PMMA chain orientation is higher in the blends than in pure PMMA and remains insensitive to the amount of $PF_3E/2$. Stretching of samples containing 20% of PF₃E/2 at $T = T_{o} + 20^{\circ}$ C leads to the same conclusion, the orientation obtained being, as expected, less important than the orientation achieved at $T = T_g + 12.5^{\circ}$ C. As a matter of fact, PF₃E crystallization induces the appearance of a PMMA phase containing about 3% of PF₃E whatever the initial PF_3E percentage in the blend. As far as PF_3E orientation is concerned, values of the function (R-1)/ $(R+2)_{540}$ at a draw ratio $\lambda = 4$ are given in *Table 2*. The contribution of crystallites to orientation leads to higher values than the values obtained in homogeneous blends (see *Figure 6*). Furthermore, the stretching temperature has no influence on orientation in the 20% $PF_3E/2$ blend. This is easily understood if one considers the crystallites acting as the knots of a network with physical crosslinks. A similar effect was previously observed in a study of poly(vinyl chloride) orientational behaviour²⁵

Orientation developed in the 30% $PF_3E/2$ blend is higher than the orientation achieved in the 20% $PF_3E/2$ blend. This result is well supported by an increase of crystallinity in the 30% blend. Two simultaneous phenomena must occur. On the one hand, as crystallites orient more readily than the amorphoous phase, an increase in the number and/or the degree of perfection of crystals will result in an increase of the orientation function. On the other hand, the number of physical crosslinks will increase with crystallinity and amorphous chains should also be more oriented.

CONCLUSIONS

In this study on PMMA-PF₃E blends, we have shown that one observes an increase of PMMA orientation with respect to pure PMMA in homogeneous blends stretched under the same experimental conditions $(T - T_o = \text{con-}$ stant), the range of concentration being up to 10% of PF_3E . On the other hand, PF_3E chain orientation is insensitive to the concentration of this polymer in the blend. An increase of stretching temperature induces a decrease of the orientation level of both polymers. The present results are in good agreement with the behaviour previously observed in other compatible blends^{1,26,27}, i.e. that orientation is concentration-dependent when the corresponding component is present in a large amount. The increase of orientation observed in the blends is in good agreement with an increase in the friction coefficient.

In blends in which PF_3E has crystallized, a small amount of PF_3E (~3%) remains in the PMMA amorphous phase. The orientation of this polymer is insensitive to the original PF_3E concentration and remains higher than the orientation observed in pure PMMA under the same experimental conditions. The orientation of the semicrystalline PF_3E phase increases with crystallinity but remains insensitive to the stretching temperature because of the existence of a physical network originating from the presence of crystallites.

REFERENCES

1 Zhao, Y., Jasse, B. and Monnerie, L. Polymer 1989, 30, 1643

Orientation in polymer blends: Y. Zhao et al.

- 2 Noland, J. S., Hsu, N. N. C., Saxon, R. and Schmitt, J. M. Adv. Chem. Ser. 1971, 99, 15
- Nishi, T. and Wang, T. T. *Macromolecules* 1975, **8**, 909 Roerdink, E. and Challa, G. *Polymer* 1980, **21**, 590 3
- 4
- Hoursont, O. J. and Hughes, I. D. Polymer 1977, 18, 1175 Coleman, M. M., Zarian, J., Varnell, D. F. and Painter, P. C. 5 6 J. Polym. Sci., Polym. Lett. Edn. 1977, 15, 745
- 7 Wendorff, J. H. J. Polym. Sci., Polym. Lett. Edn. 1980, 18, 439
- 8 Douglass, D. C. and McBrierty, V. J. Macromolecules 1978, 11, 766
- 9 Lin, T. S. and Ward, T. C. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1983, 24, 136
- 10 Paul, D. R. and Altamirano, J. O. Polvm. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1974, 15, 409
- Yagi, T. Polym. J. 1979, 11, 353 11
- 12 Tonelli, A. E., Schilling, F. C. and Cais, R. E. Macromolecules 1981, 14, 560
- Cais, R. E. and Kometani, J. M. Macromolecules 1984, 17, 13 1933
- Lovinger, A. J. and Cais, R. E. Macromolecules 1984, 17, 14 1939

- 15 Léonard, C., Halary, J. L. and Monnerie, L. Polymer 1985, 26, 1507
- Wang, L. H. and Porter, R. S. J. Polym. Sci., Polym. Phys. Edn. 16 1874, 22, 1645
- 17 Faivre, J. P., Xu, Z., Halary, J. L., Jasse, B. and Monnerie, L. Polymer 1987, 28, 1881
- 18 Ward, I. M. 'Structure and Properties of Oriented Polymers', Applied Science, London, 1975
- Nagai, H. Appl. Polym. Sci. 1963, 7, 1697 19
- 20 Zhao, Y., Jasse, B. and Monnerie, L. Makromol. Chem., Macromol Symp. 1986, 5, 87
- Bachmann, M.A., Gordon, W.L., Koenig, J.L. and Lando, 21 J. B. J. Appl. Phys. 1979, 50, 6106
- 22 Kim, B. S. and Porter, R. S. Macromolecules 1985, 18, 1214
- 23 Hahn, B. R. and Wendorff, J. H. Polymer 1985, 26, 1619
- 24 Lefebvre, D., Jasse, B. and Monnerie, L. Polymer 1982, 23, 706
- 25 Theodorou, M. and Jasse, B. J. Polym. Sci. (B) Polym. Phys. 1986, 24, 2643
- 26 Faivre, J. P., Jasse, B. and Monnerie, L. Polymer 1985, 26, 879
- 27 Bouton, C., Arrondel, V., Rey, V., Sergot, Ph., Manguin, J. L., Jasse, B. and Monnerie, L. Polymer 1989, 30, 1414